

Chapter Overview

- The study of bathymetry determines ocean depths and ocean floor topography.
- Echo sounding and satellites are efficient bathymetric tools.
- Most ocean floor features are generated by plate tectonic processes.
- Different sea floor features exist in different oceanographic locations.

© 2014 Pearson Education, Inc

Volcanic arc Seamount Active margin Continental shelf Submarine fan Sonar Black smoker

Ocean trench Wid-ocean ridge
Passive margin Rift valley Submarine canyon
Graded bedding Pacific Ring of fire Continental arc Turbidity current Continental rise Continental Slope Pillow lava Abyssal plain Transform fault

Bathymetry

 Measures the vertical distance from the ocean surface to mountains, valleys, plains, and other sea floor features

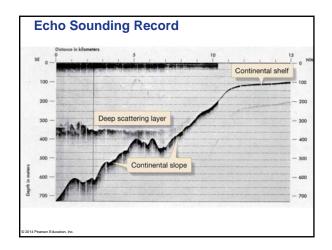
2014 Pearson Education, Inc

Measuring Bathymetry

- Soundings
 - Poseidonus made first sounding in 85 B.C.
 - Line with heavy weight
 - Sounding lines used for 2000 years
- Fathom
 - Unit of measure
 - 1.8 meters (6 feet)

2014 Passeon Education In

Measuring Bathymetry

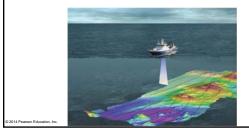

- · HMS Challenger
 - Made first systematic measurements in 1872
- Deep ocean floor has relief
 - Variations in sea floor depth

© 2014 Peagron Education II

Measuring Bathymetry

- Echo Soundings
 - Echo sounder or fathometer
 - Reflection of sound signals
 - German ship *Meteor* identified mid-Atlantic ridge in 1925
- · Lacks detail
- May provide inaccurate view of sea floor

2014 Pearson Education In


Measuring Bathymetry

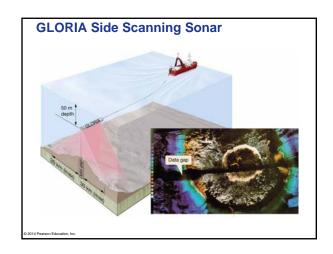
- Precision Depth Recorder (PDR)
 - 1950s
 - Focused high-frequency sound beam
 - First reliable sea floor maps produced
 - Helped confirm sea floor spreading

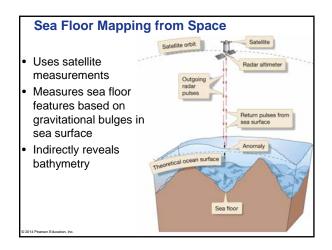
2014 Pearson Education, In

Modern Bathymetry Measuring

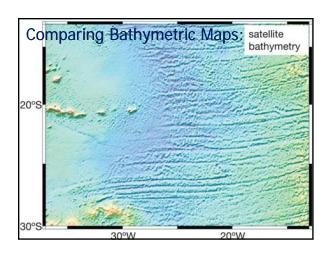
- Multibeam Echo Sounders
 - Multiple simultaneous sound frequencies
- Seabeam
 - First multibeam echo sounder
 - Map sea floor strips up to 60 km (37 mi) wide

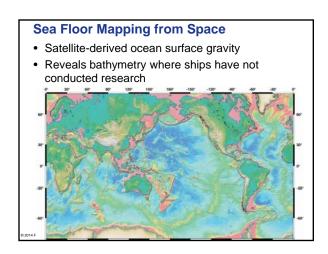
Modern Bathymetry Measuring

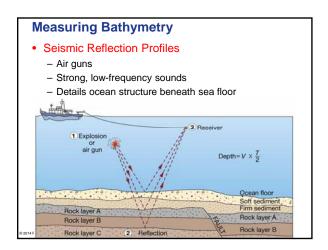

- SONAR
 - "SOund Navigation And Ranging" (acronym)

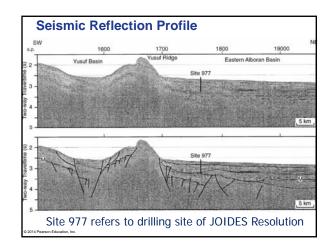

2014 Pearson Education, I

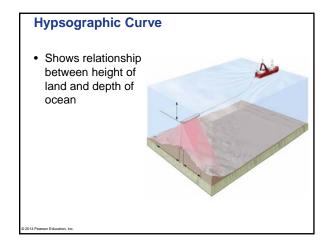
Modern Bathymetry Measuring


- Side scan sonar
 - GLORIA (Geological Long-range Inclined Acoustical instrument)
 - Sea MARC (Sea Mapping and Remote Characterization)
- Can be towed behind ship to provide very detailed bathymetric strip map


2014 Pearson Education, Inc

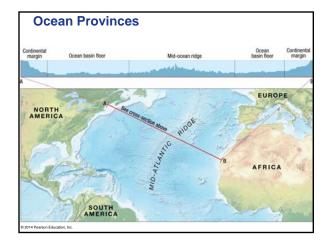






Hypsographic Curve

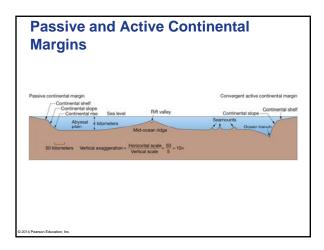
- 70.8% of Earth covered by oceans
- Average ocean depth is 3729 meters
- Average land elevation is 840 meters
- Uneven distribution of areas of different depths/elevations
- Variations suggest plate tectonics at work


014 Pearson Education, Inc

Ocean Provinces

Three Major Provinces

- Continental margins
 - -Shallow-water areas close to shore
- Deep-ocean basins
 - Deep-water areas farther from land
- Mid-ocean ridge
 - -Submarine mountain range


© 2014 Pearson Education, In

Continental Margins

- Passive
 - Not close to any plate boundary
 - No major tectonic activity
 - East coast of United States
- Active
 - Associated with convergent or transform plate boundaries
 - Much tectonic activity

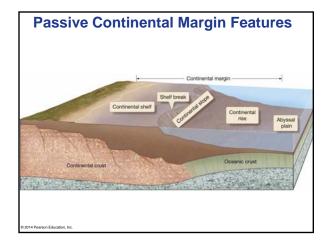
© 2014 Pearson Education, In

Active Continental Margins

- Convergent Active Margin
 - Oceanic-continent convergent plate boundaries
 - Active continental volcanoes
 - Narrow shelf
 - Offshore trench
 - Western South America

© 2014 Pearson Education In

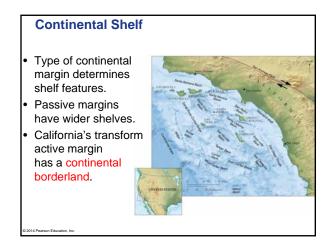
Active Continental Margins

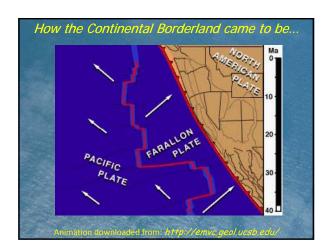

- Transform Continental Margin
 - Less common
 - Transform plate boundaries
 - Linear islands, banks, and deep basins close to shore
 - Coastal California along San Andreas Fault

014 Pearson Education, Inc

Continental Margin Features

- · Continental shelf
- · Shelf break
- Continental slope
- · Continental rise


2014 Pearson Education, Inc


Continental Shelf

- Flat zone from shore to shelf break
 - Shelf break is where marked increase in slope angle occurs.
- Geologically part of continent
- Average width is 70 km (43 miles) but can extend to 1500 km (930 miles)
- Average depth of shelf break is 135 meters (443 feet)

© 2014 Pearson Education, In

Continental Slope

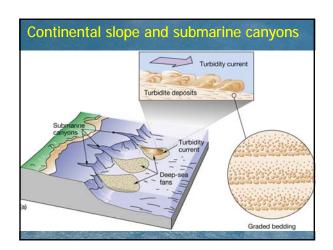
- Where deep ocean basins begin
- Topography similar to land mountain ranges
- Greater slope than continental shelf
 - Averages 4° but varies from 1–25° gradient
- Marked by submarine canyons

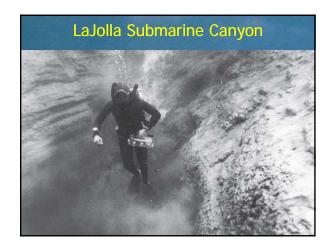
© 2014 Decree Education

Submarine Canyons

- Narrow, deep, V-shaped in profile
- Steep to overhanging walls
- Extend to base of continental slope, 3500 meters (11,500 feet) below sea level
- · Carved by turbidity currents

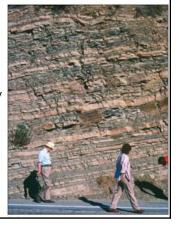
2014 Pageon Education In


Turbidity Currents


- Underwater avalanches mixed with rocks and other debris
- · Sediment from continental shelf
- Moves under influence of gravity

Sediments deposited at slope base

Turbide deposits

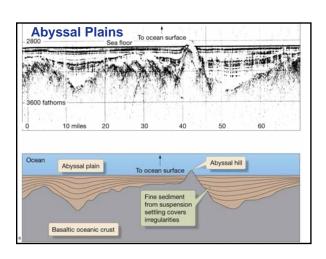

Carried and Carried

Continental Rise

- Transition between continental crust and oceanic crust
- Marked by turbidite deposits from turbidity currents
- Graded bedding in turbidite deposits

Continental Rise

- Deposits generate deep-sea fans, or submarine fans
- Distal ends of submarine fans become flat abyssal plains

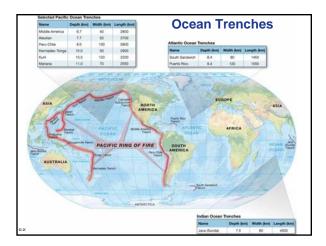


Abyssal Plains

- Extend from base of continental rise
- Some of the deepest, flattest parts of Earth
- Suspension settling of very fine particles
- Sediments cover ocean crust irregularities
- Well-developed in Atlantic and Indian oceans

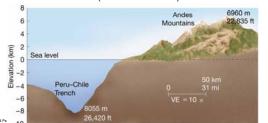
© 2014 Passeon Education Inc

Abyssal Plain Volcanic Peaks


- Poke through sediment cover
- Below sea level:
 - Seamounts, tablemounts, or guyots at least
 - 1 km (0.6 mile) above sea floor
 - Abyssal hills or seaknolls are less than 1 km (0.6 mile) above sea floor
- Above sea level:
 - Volcanic islands

© 2014 Pearson Education II

Ocean Trenches and Volcanic Arcs

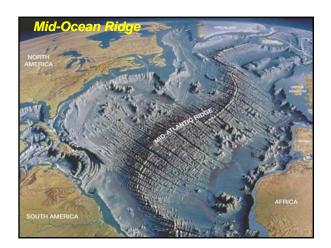

- Convergent margins generate ocean trenches.
 - Deepest part of oceans
 - Most in Pacific Ocean
 - Deepest trench Mariana Trench at 11,022 meters (36,161 feet)

© 2014 Pearson Education Inc

Island and Continental Arcs

- Volcanic arc on non-subducted plate
- Island arc
 - Islands in ocean (Japan)
- Continental arc
 - Mountains on land (Andes Mountains)

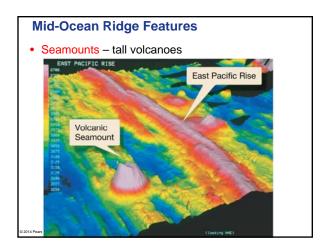
Pacific Ring of Fire

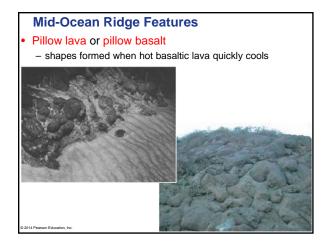

- Margins of Pacific Ocean
- Majority of world's active volcanoes and earthquakes
- Marked by convergent boundaries

2014 Pageron Education In

Mid-Ocean Ridge

- Longest mountain chain
- On average, 2.5 km (1.5 miles) above surrounding sea floor
- Volcanic
- Basaltic lava
- Divergent plate boundary


© 2014 Pearson Education, I



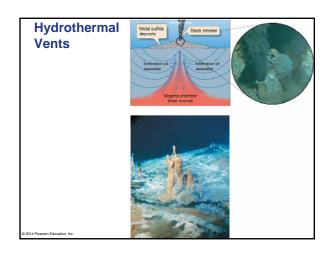
Mid-Ocean Ridge Features

- Rift Valley
 - Downdropped area on crest of ridge
 - Marked by fissures and faults
 - Small earthquakes

© 2014 Passeon Education In

Mid-Ocean Ridge Features

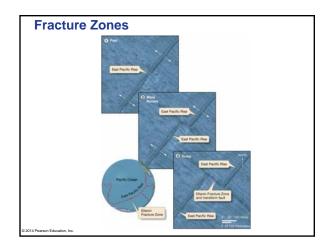
Hydrothermal Vents

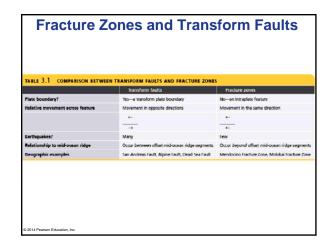

- · Sea floor hot springs
- Foster unusual deep-ocean ecosystems able to survive without sunlight

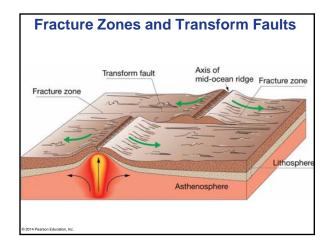
2014 Pageron Education In

Hydrothermal Vents

- Warm water vents temperatures below 30°C (86°F)
- White smokers temperatures from 30– 350°C (86–662°F)
- Black smokers temperatures above 350°C (662°F)

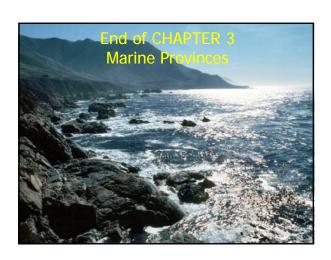

© 2014 Pearson Education, I




Fracture Zones and Transform Faults

- Transform faults along mid-ocean ridge offset spreading zones.
 - Linear ridge on spherical Earth
- Seismically active
- Fracture zones along Pacific Ocean mid-ocean rise
 - Seismically inactive
 - Occur beyond offset fragments of rise

2014 Pearson Education, Inc



Oceanic Islands

- Types:
 - Volcanic activity (random?)
 - Hotspots
 - Island arcs
 - Islands that are part of continents

© 2014 Pearson Education, In

