1

2 Plate Tectonics: summary in haiku form Alfred Wegener

gave us Continental Drift. Fifty years later...

3

4 Chapter Overview

- Much evidence supports plate tectonics theory.
- The plate tectonics model describes features and processes on Earth.
- Plate tectonic science has applications to Earth Science studies.
- Configuration of land and oceans has changed in the past and will continue to change into the future.

5 Plate Tectonics

- *Alfred Wegener* first proposed in 1912
- Called it "Continental Drift"

6 Evidence for Continental Drift

- Wegener proposed Pangaea one large continent existed 200 million years ago
- Panthalassa one large ocean
 Included the Tethys Sea
- Noted puzzle-like fit of modern continents

7 Present-day Configuration

8 200 million years ago

9 Evidence for Continental Drift

- Puzzle-like fit corroborated in 1960s
- Sir Edward Bullard used computer models to fit continents.

10 Evidence for Continental Drift

- Matching sequences of rocks and mountain chains
- · Similar rock types, ages, and structures on different continents
- 11 Present Day

12 About 300 million years ago

13 Evidence for Continental Drift

- Glacial ages and other climate evidence
- Evidence of glaciation in now tropical regions
- Direction of glacial flow and rock scouring
- Plant and animal fossils indicate different climate than today.

14 Evidence for Continental Drift

- Distribution of organisms
 - Same fossils found on continents that today are widely separated
 Modern organisms with similar ancestries

15 B Objections to Early Continental Drift Model

- 1915 Wegener published *The Origins of Continents and Oceans* – Suggested continents plow through ocean basins
- Met with hostile criticism and open ridicule
- Tidal gravitational attractions too small to move continents
- Proposed mechanism defies laws of physics

.

16 Evidence for Plate Tectonics

- New evidence from World War II
- Sea floor studies with sonar
 - New technology enabled study of Earth's magnetic field

17 Evidence for Plate Tectonics

- Earth's magnetic field and paleomagnetism
- · Earth has magnetic polarity
- North and South polarities
- Magnetic polarity recorded in igneous rocks

 Magnetite in basalt
- _____

18 Evidence for Plate Tectonics

- Paleomagnetism study of Earth's ancient magnetic field – Interprets where rocks first formed
 - Magnetic dip

19 📕 Earth's Magnetic North Pole

- 20 Evidence for Plate Tectonics
 - Apparent polar wandering
 - · Location of North Pole changed over time
 - · Magnetic dip data

²¹ Magnetic Polarity Reversals

- · Earth's magnetic polarity reverses periodically
- Recorded in ancient igneous rocks
- 176 reversals in past 76 million years
- Unpredictable pattern

²² Paleomagnetism and the Ocean Floor

- 1955 deep water rock mapping
- Magnetic anomalies regular pattern of north-south magnetism "stripes"
- · Stripes were symmetrical about long underwater mountain range

23 Sea Floor Spreading

- Harry Hess
 - World War II submarine captain and geologist
- · Depth recordings show sea floor features
- History of Ocean Basins
 - Seafloor spreading
 - Mantle convection cells as driving mechanism
- 24 Plate Tectonic Processes

25 Sea-Floor Spreading and Plate Boundaries

26 Sea Floor Spreading

- Mid-ocean ridge spreading center
- Subduction zones oceanic trench site of crust destruction
- · Subduction can generate deep ocean trenches.

27 Sea Floor Spreading Evidence

- Frederick Vine and Drummond Matthews (1963)
- · Analysis of igneous rock stripes around mid-ocean ridge
- · Sea floor stripes record Earth's magnetic polarity
- 28 Age of Ocean Floor
 - Late 1960s deep-sea drilling
 - Radiometric dating of ocean rocks
 - · Symmetric pattern of age distribution about mid-ocean ridges

Oldest ocean floor only 180 million

years old

29 Age of Ocean Floor

30 JOIDES Resolution

31 Heat Flow

- · Heat flow heat from Earth's interior released to surface
- Very high at mid-ocean ridges
- Low at subduction zones

32 Earthquakes as Evidence

- Most large earthquakes occur at subduction zones.
- Earthquake activity mirrors tectonic plate boundaries.
- 33 📕 Global Plate Boundaries

34 Plate Tectonics Theory

- · Lithosphere tectonic plates that float on ductile asthenosphere
- Large-scale geologic features occur at plate boundaries.
- Two major tectonic forces
 - Slab pull
 - Slab suction
- 35 Jypes of plate boundaries
- ³⁶ Examples of Plate Boundaries

37 Bivergent Boundary Features

- Plates move apart
- Mid-ocean ridge
- Rift valleyNew ocean floor created
- Shallow focus earthquakes
 - Intensity measured with seismic moment magnitude

38 Divergent Plate Boundary

39

40 Formation of a Rift Valley

41 - Types of Spreading Centers

- Oceanic rise
 - Fast-spreading
 - Gentle slopes
 - East Pacific
- Oceanic ridge
 - Slow-spreading
 - Steep slopes
 - Mid-Atlantic
- Ultra-slow
 - Deep rift valley
 - Widely scattered volcanoes
 - Arctic and southwest India
- 42 Fast vs. Slow:

43 Convergent Boundary Features

- Plates move toward each other
- Oceanic crust destroyed
 - Ocean trench
 - Volcanic arc
- Deep focus earthquakes

- Great forces involved
- Mineral structure changes associated
- 44 Three types of convergent plate boundaries:

45 Types of Convergent Boundaries

- Oceanic-Continental Convergence
 - Ocean plate is subducted
 - Continental arcs generated
 - Explosive andesitic volcanic eruptions

46 Types of Convergent Boundaries

- Oceanic-Oceanic Convergence
 - Denser plate is subducted
 - Deep trenches generated
 - Volcanic island arcs generated
- _

47 - Types of Convergent Boundaries

- Continental-Continental Convergence
 - No subduction
 - Tall mountains uplifted
- Himalayas from India-Asia collision

48 📕 Converging Margins: India-Asia Collision

49 March Transform Boundary Features

- Offsets oriented perpendicular to mid-ocean ridge
 Segmente of plotos clide past
 - Segments of plates slide past each other
- · Offsets permit mid-ocean ridge to move apart at different rates
- Shallow but strong earthquakes

50 - Transform Boundary Features

- Oceanic Transform Fault ocean floor only
- Continental Transform Fault cuts across continent – San Andreas Fault
- Transform faults
- occur between
- mid-ocean ridge
- segments. 51 - Transform Faults

52 *Transform fault boundary*

⁵³ Applications of Plate Tectonics

Mantle Plumes and Hotspots

- Intraplate features
- Intraplate features
 - Volcanic islands within a plate
 - Island chains
- Record ancient plate motions
 - Nematath hotspot track
- 54 Global Hotspot Locations

55 Hawaiian Is. – Emperor Seamount Nematath

56 Plate Tectonics and Intraplate Features

- Seamounts
 - Rounded tops
- Tablemounts or guyots
 - Flattened tops
- · Subsidence of flanks of mid-ocean ridge

• Wave erosion may flatten seamount.

57 Coral Reef Development

- Fringing reefs develop along margin of landmass
- Barrier reefs separated from landmass by lagoon
- · Atolls reefs continue to grow after volcanoes are submerged

58 Great Barrier Reef

records plate movement

59 Detecting Plate Motion with Satellites

60 Paleogeography

- · Paleogeography study of ancient continents
- Continental accretion
 - Continental material added to edges of continents through plate motion
- Pangaea 540 million to 300 million years ago
- •

61 Breakup of Pangaea

- 180 million years ago Pangaea separated
 - N. and S. America rifted from Europe and Africa Atlantic Ocean forms
 - Atlantic Ocean forms
- 120 million years ago S. America and Africa clearly separated
- 45 million years ago India starts
- Asia collision
 - Australia moving north from Antarctica

62 Pangaea Breakup

63 Future Predictions

- · Assume same direction and rate of plate motions as now
 - Atlantic will enlarge, Pacific will shrink
 - New sea from East Africa rift valleys
 - Further Himalaya uplift
 - Separation of North and South America
 - Part of California in Alaska

64 - World Map 50 million Years in Future

65 Wilson Cycle

- John Tuzo Wilson
- · Plate tectonics model shows life cycle of ocean basins
 - Formation
 - Growth
 - Destruction
- 66 📕 Wilson Cycle
- 67 End of Chapter 2 -

Plate Tectonics and the Ocean Floor